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Abstract
The high uncertainty of point predictions when forecasting conflict, especially at the
subnational level, is a significant shortcoming and major obstacle to the practical
application of conflict prediction systems. In our contribution to the 2023/24 ViEWS
prediction challenge at the PRIO-GRID-month (pgm) level, we employ a quasi-hurdle
combination of tree-based models to generate pgm-specific predictions of N=1000
samples each three to fourteen months into the future. Our strategy combines
predictions from a binary classification task on the occurrence of fatalities with sample
outputs from a distributional regressors trained only on non-zero targets. We address
the problem of zero-inflation by interpreting the probability of the classifier as the
share of non-zero predictions in the final samples drawn to represent the predicted
distributions. We design a modeling pipeline to automatically tunemultiple classifiers
and regressors and select the best model for each prediction timestep based on tuning
performance. In an effort to address a lack of data as a source of uncertainty, we
additionally generate “local” model predictions for semi-automatically generated
spatial clusters of violence based on pgms experiencing any fatalities in our training
data, thus accounting for context-specific systematic differences in conflict dynamics.
While all our models beat a series of benchmarks across almost all test windows and
metrics, the “global”-only model (unibw_trees_global) and a global-local combination

2 The Center for Crisis Early Warning (Kompetenzzentrum Krisenfrüherkennung) is funded by the
German Federal Ministry of Defense and the German Federal Foreign Office. The views and opinions
expressed in this article are those of the author(s) and do not necessarily reflect the official policy or
position of any agency of the German government.

1 This paper documents a contribution to the VIEWS Prediction Challenge 2023/2024. Financial
support for the Prediction Challenge was provided by the GermanMinistry for Foreign Affairs. For more
information on the Prediction Challenge please see Hegre et al. (Forthcoming) and
https://viewsforecasting.org/research/prediction-challenge-2023.
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selected based on past performance (unibw_trees_global-local) scored best, with the
local model (unibw_trees_local) only slightly worse.

Introduction
Predicting violence at the pgm-level is not an easy task. The highly zero-inflated nature
of the data, the coarse available data resolution of many potential determinants of
conflict and, therefore, prediction features, as well as the fairly large uncertainties
around recording conflict events and fatalities make it hard to beat even simple
heuristics, as the findings of the first ViEWS prediction challenge showed (Vesco et al.
2022). Accounting for some of these uncertainties, the goals of this second challenge
posted by the ViEWS team is not only to predict the expected number of fatalities but
also to estimate uncertainty around the predictions in the form of samples from a
predictive distribution (Hegre et al. 2023, Hegre et al. Forthcoming).

Despite their recent popularity and general advances aroundmore complex approaches
based on neural networks, practical applications show that often “tree-based models
still outperform deep learning” (Grinsztajn et al. 2022: 1) when it comes to the tabular
data primarily used in conflict research. Tree-based models also come with significant
advantages in terms of interpretability, which is especially useful when communicating
modeling results to policy- and decision-makers. Building on insights from previous
modeling efforts, especially the strong performance of hurdle models and the potential
of using ensembles (Vesco et al. 2022, Hegre et al. 2022b), we designed a modeling
approach consisting of tree-based hurdle ensembles to predict violence at the
pgm-level for our contribution to the challenge. Within this approach we incorporate
distribution-specific regressors to estimate predictive distributions for each pgm
individually. Furthermore, we address the issue of unobserved context-specific factors
as a source of uncertainty in conflict models by creating a spatial ensemble consisting
of multiple “local” models. With this approach we aim to account for potential
systematic differences in conflict dynamics across different contexts. Lastly, we
combine the best components from each of the two levels in a global-local ensemble
based on past performance.

Our evaluation shows that all three approaches outperform the benchmarks across all
test windows and all metrics with only very few exceptions. The global model and the
global-local combined model score very similarly, while the local model performs
slightly worse, with fairly marginal overall differences between the scores. The local
approach therefore did not lead to an overall improvement of model performance. As
the simplest of our three approaches, we prefer the global model in practice.
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Methodology

Data andModelling Setup

With our main focus onmodeling strategies, we rely on the data provided by the ViEWS
team in the context of the competition and use all available features in our models. The
data cover Africa and the Middle East and are available monthly for each grid cell
starting in 1990. As outlined in the competition call, the target is the number of
fatalities from state-based armed conflict events (Hegre et al. 2023), as recorded by the
Uppsala Conflict Data Program (UCDP) (Davies et al. 2023, Sundberg et al. 2013). The
target is highly zero-inflated, with less than 0.4% non-zero values in the averagemonth
in our training data.

To generate predictions for the whole next year from the available training data, we
chose to train separate models for each of the timesteps to predict (t+3, … t+14) and
combine the resulting outputs to a full year of predictions, since we employ models
which are unable to natively generate time series predictions. As the features include
several lagged versions of our target variable, we are confident that this does not
decrease our ability to extrapolate trends unreasonably. We strictly follow the two
months time separation between features and test windows defined by the ViEWS
team3 to prevent data leakage. The training data is further limited by the time period
we want to predict into the future with this approach. For example, the t+14 model
generating the predictions for December 2018 can only be trained on data up to August
2016, 14 months before the October 2017 end of the training data, as this is the last
month where there is sufficient future information to label the target.

In the interest of usability, we designed a modular, model-agnostic modeling pipeline
in Python, which performs the tuning, training and predictingmostly automatically for
the given prediction problem. We include multiple machine learning algorithms,
selecting the algorithm which achieves the best performance during tuning for each
timestep individually. This allowed us to integrate and test multiple different machine
learning algorithms with minimal effort and means our approach can be easily reused
for different prediction problems.

We perform hyperparameter tuning for each timestep only once based on the data up
to October 2017 (N=4,378,740), before the first test window. Our tuning procedure is
based on time series cross-validation with a 5-year sliding window through the
training data. We employ the hyperopt package (Bergstra et al. 2013), which
implements a Bayesian search approach with the Tree-structured Parzen Estimator

3 For each of the six yearly test windows, the training data is artificially limited to October of the
previous year. This is done to simulate the availability gap present in the data for the true future
predictions, where training data is available until April 2024 to predict for the timeframe July 2024 to
June 2025. Therefore, predictions need to be generated for the timesteps t+3, …, t+14.
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(TPE) algorithm (Bergstra et al. 2011), to identify the best hyperparameters for each
prediction timestep model. The cross-validation and scoring within the tuning
procedure is implemented in the scikit-learn framework (Pedregosa et al. 2011). Where
necessary, we implemented custom wrappers to integrate the different estimators and
evaluation metrics into the framework. After tuning, we select the parameters with the
best performance during tuning and fit the model on all available training data for a
given test window before generating our predictions from the last available
observations 3months before the start of the prediction window.

Our tuning metric depends on the modeling step in the hurdle model, with further
details provided below. For each chosen base metric, our tuning loss is based on the
mean performance of the test splits during cross-validation. As we observed a strong
tendency to overfit for some parameter combinations, we combine this with a penalty
term for deviation from the mean performance of the training splits to emphasize
generalizability of the models.4

Local Models

Much of the uncertainty of conflict prediction models likely stems from a lack of
(precise enough) data on some of the factors influencing the occurrence and dynamics
of violence. Consequently, these are not represented well in the available feature set,
making it challenging to generate reliable predictions (Cederman & Weidmann 2017,
Chadefaux 2017), with models relying heavily on past violence dynamics as a proxy for
these underlying issues (Hegre et al. 2022a, Mueller & Rauh 2022).

To account for potential systematic differences across different conflict contexts, we
develop a strategy to incorporate results from local models in addition to our base
modeling approach. Our approach is inspired by the Geographical Random Forests
(GRFs) method (Georganos et al. 2021), which we adapt to the problem of conflict
prediction. While the original GRFs work by estimating a local model for each spatial
unit trained on data from a spatial buffer zone, this is unsuited to the problem of
conflict prediction on the pgm level. Either the scarcity of non-zero values would result
in almost all local models not having enough training data to learn meaningful
patterns of violence with a small buffer area, or the large number of grid cells in our
data wouldmake this process computationally too expensive with larger buffer sizes.

4 The formula we use is loss = -(mean test score - 0.5 ⦁ |mean train score - mean test score|), with scores
where lower values are better inverted and themean calculated across all cross-validation splits. Loss is
thenminimized by the TPE tuning algorithm.
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Figure 1: Visualization of the creation process of the clusters for local models. a) clusters created by manually tuned HDBSCAN algorithm with corresponding
polygons; b) clusters after merging of smaller clusters with updated polygons; c) final clusters with grid-cells without violence assigned. Grid cells shown in a)
and b) are those experiencing any violence in the training data (1990-2017). Black grid cells displayed in a) and b) are not assigned to any clusters by
HDBSCAN initially.
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Instead, we create custom contiguous geographic clusters based on the spatial
distribution of cells with any recorded fatalities in the training data (1990-2017) using
the HDBSCAN clustering algorithm (Campello et al. 2013)5. We performed an initial
manual tuning of the clustering algorithm until inspections of the results yielded
groupings, which plausibly corresponded to visually discernible patterns, resulting in
eleven clusters. To ensure sufficient non-zero training data in each cluster for the
hurdle regression models, we further reduce this down to six clusters by iterating over
the clusters and combining smaller clusters with their nearest neighbors based on
centroid distance of polygons drawn around each cluster, requiring aminimum of 1000
pgms with non-zero fatalities. To subsequently assign any cells not containing conflict,
we first draw new polygons around the combined grid cells of each cluster. Cells
remaining outside these polygons were assigned to the cluster with the nearest
boundary to the cell center. The procedure and resulting clusters are visualized in
Figure 1. We subsequently train separate “local” models for each of the clusters
following the same procedure as with the “global” models, described in the following
section. Each grid cell is therefore assigned not only to exactly one cluster but also to
one corresponding local set of models. Combining the predictions from all local models
yields predictions for the whole geographical area of interest.

Hurdle Approach

Our overarching modeling approach is a variation on the principle of hurdle models.
Hurdle models are a combination of two modeling steps: a first step consisting of a
classifier determining whether the hurdle is reached, trained on all available training
data, and a second step consisting of a regressor determining the predicted value,
trained on only the subsection of the training data where the target has reached the
hurdle. The hurdle technique relies on the assumption that different ranges of the data
follow different distributions. This is often the case when the data is zero-inflated, as
the distinction between zero and non-zero may follow a different logic than that
determining the non-zero data value. This is a reasonable assumption for conflict data
as well, on the one hand due to the nature of conflict event data generation, and on the
other hand since the determinants of the intensity of conflict may differ from the
determinants of the occurrence of conflict. Moreover, hurdle models have been
demonstrated to work comparatively well in predicting conflict intensity (see e.g. Hegre
et al. 2022b). We perform tuning and prediction for each of these two steps separately
to allow for custom combinations of global and local predictions as further discussed
below.

5 We tested two additional versions of generating clusters: One with clusters created via an alternative
clustering algorithm, DBSCAN, and a similar manual tuning of clustering parameters, and one with
clusters corresponding to the United Nations Statistics Division sub-regions, with grid cells assigned to
countries based on amajority rule. Both performed slightly worse in testing.
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Classifier

Our classifiers are trained on a dummy variable indicating whether or not any fatalities
occurred in a given pgm. We include two different classifiers in our modeling pipeline,
random forests (Breiman 2001) and eXtreme gradient boosting (Chen & Guestrin 2016)
models6.

● Random Forests (RF) estimate probability by aggregating the results of a
multitude of decision trees. Each tree in the forest is built from a different
sample of data, using a technique called bootstrap aggregating, or bagging.
Additionally, Random Forests employ random feature selection, where each split
in a tree considers only a random subset of features.

● eXtreme Gradient Boosting (XGB), employs a regularized learning objective
that balances model complexity and predictive accuracy. The system utilizes
gradient tree boosting, where the model is trained in an additive manner,
incrementally improving the predictions by minimizing a loss function using
second-order gradient statistics. Models are built sequentially, correcting the
errors of previous models.

Our tuning metric of choice for classification is the average precision score, which
summarizes the precision-recall-curve. This metric is well suited for zero-inflated
classification tasks as it does not take into account whether zeroes are predicted
correctly, which we argue is of little interest given the relative scarcity of violence (also
see Saito & Rehmsmeier 2015). Tuning performance for both model types is fairly
similar, with RF performing slightly better in all global models, while XGB is favored for
most local models.

Regressor

To estimate uncertainty around predictions, we rely on regressors designed to output
distributions directly rather than trying to estimate distributions around point
predictions ex post. We include three different tree-based distributional regressors in
our modeling pipeline, quantile regression forests (Meinshausen 2006), distributional
random forests (Cevid et al. 2022) and natural gradient boosting for probabilistic
regression (Duan et al. 2019):

● Quantile Regression Forests (QRF) extend the RF methodology to estimate
conditional quantiles. Like RF, the QRF algorithm involves growing an ensemble
of decision trees using a randomized node and split point selection process.
Unlike traditional RFs, which only retain the mean response in each leaf, QRF
retains all observed responses, enabling the estimation of the entire conditional
distribution. The algorithm calculates the conditional quantile by averaging the

6 We also tested logit models as a “simple” alternative approach, which performedworse by a factor of
2-3 on average.
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weighted distribution of observed responses, with weights derived from the
original RF methodology. We use evenly spaced quantile steps to generate the
samples for our predictions with this algorithm.

● Distributional Random Forests (DRF) are another extension of the traditional
RF framework used to estimate the entire conditional distribution of univariate
or multivariate responses. The methodology involves constructing trees that
split data points based on a novel criterion derived from the Maximum Mean
Discrepancy (MMD) statistic, whichmeasures differences in distributions rather
than just differences in means. This splitting criterion is applied recursively to
ensure that the distributions in the resulting child nodes are as homogeneous as
possible. Each tree in the forest is grown to optimize this distributional metric.
The final forest model uses a weighted combination of trees to estimate the full
conditional distribution of the response variables. This approach allows DRF to
adaptively weight training data points based on their relevance to the
prediction, providing a robust and flexible method for modeling complex
dependencies.

● Natural Gradient Boosting (NGB) for probabilistic regression extends gradient
boosting to the estimation of probability distributions. This involves boosting
the parameters of a specified parametric distribution using a natural gradient,
which corrects the training dynamics for more stable and efficient learning. The
algorithm integrates three modular components: a simple base learner, a
parametric probability distribution, and a proper scoring rule. The natural
gradient is employed to optimize the parameters of the conditional distribution,
ensuring that the updates are invariant to reparameterization and efficiently
exploit the curvature of the score in distributional space. We use decision trees
as the base learner, log-normal probability distributions and the CRPS as the
scoring rule.

Following the principle of hurdle models, we train our models only on pgms with
non-zero targets while still generating predictions for all pgms. As our tuning metric,
we use the competition’s mainmetric, the Continuous Ranked Probability Score (CRPS)
(see Hegre et al. 2023). In line with the maximum number of samples allowed by the
prediction challenge, we set our regression models to output 1000 samples of the
predicted distribution. This results in a wider range of possible values, ensuring the
inclusion of low-probability outcomes. NGB performed best during tuning, being
chosen in 75% of global models and 80% of local models, with the other two regressors
only chosen occasionally.

Quasi-Hurdle Ensemble

Hurdle model point predictions are usually generated via a simple multiplication of the
output of the classifier and the predicted value of the regressor. Given that we work
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with N=1000 samples instead, a multiplication of the classification probability with
each of the samples would result in non-integer predictions, which is not in line with
the nature of fatality counts. At the same time, our tree-based regressors trained only
on non-zero targets never produce zero predictions7 and a multiplication would
therefore likely overestimate the probability of violence occurring. While both issues
could be partially addressed with rounding, we opt to instead interpret the
classification probability as the percentage of the ensemble sample taken from the
non-zero predictions, with the remaining share of the 1000 samples filled with zero
values. In testing, this also performed better than the multiplicative approach.8 We
combine the global and local classification and regression predictions separately to
generate one purely global and one purely local set of final predictions.

Global-Local Ensemble

While the GRF algorithm inspiring our local approach combines local and global
predictions via weighted means, we found this not be beneficial during testing, with
performance always falling between the two “pure” predictions. However, our
approach allows us to selectively pick and choose the components for the hurdle
ensemble from either the global or the local model, creating a third set of predictions
combining global and local model outputs. We do so by testing the combined
performance of the hurdle ensemble for each of the four possible combinations of
classification and regression predictions on a cluster-by-cluster basis, selecting the
global-local combination for each cluster which performed best across the three years9

prior to a given prediction window.

Evaluation on TestWindows
To judge the performance of our three ensemble predictions10, we compare them to
several benchmarks provided by the ViEWS team across the six yearly test windows.
Those are two naive benchmarks and three “conflictology” benchmarks based on
medium- to long-term conflict history. The naive benchmarks are samples drawn from
a Poisson distribution centered around the last observed values for each grid cell (Hegre

10 For simplicity, we subsequently use the term “model” in this context to refer to the respective
specification used to generate our global-only, local-only, or global-local ensemble prediction.

9 We also tested this using only one or two years of prior data, which resulted in worse performance of
the combined prediction. This is likely connected to a fairly high volatility in performance across years,
with prior performance not correlated enough to future performance. An increase to five years of prior
data did also not lead tomeaningful improvements.

8 We also tested selecting either all-zero samples or the full non-zero sample based on the predicted
probability from the classifier and a threshold, which performed significantly worse.

7 The only exception here is NGB which does also predict zeroes. For consistency with the other
algorithms we replace all zeros with ones in the NGB predictions.
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et al. 2023) and predictions with only zero values, which we initially included based on
the extremely high proportion of zeros in the target and which have since also been
added to the suite of benchmarks by the ViEWS team. The “conflictology” benchmarks
all treat historic fatality counts as draws from the predictive distribution to generate
forecasts. The first benchmark (“conflictology”) uses fatality counts from a specific grid
cell during the previous 12 months, for the respective prediction window (12 draws).
The second benchmark (“conflictology neighbors”) follows the same principle, but uses
the combined conflict history of the grid cell and its immediate neighbors (108 draws).
The third benchmark (“bootstrap 240”) draws 1000 random samples from the grid
cell’s conflict history of the last 240 months. All also adhere to the two-months gap
between training and test data. For instance, the “conflictology” samples for all months
in 2018 are based on the observed fatalities fromNovember 2016 to October 2017.11

Model Year CRPS IGN MIS MSE MAE

Global 2018 0.1300 0.0568 3.4406 60.554 0.3106

Local 2018 0.1376 0.0688 4.4840 56.312 0.4892

Global-local 2018 0.1324 0.0578 3.5510 61.223 0.3337

All-zero 2018 0.1444 0.0763 5.7765 65.815 0.1444

Poisson (last) 2018 0.3860 0.1001 13.879 169.82 0.4048

Conflictology 2018 0.1919 0.7887 4.6422 91.442 0.3510

Conf. neighbors 2018 0.1473 0.1559 5.2755 69.367 0.3651

Bootstrap 240 2018 0.1443 0.0770 5.7765 67.003 0.3108

Global 2019 0.1010 0.0550 2.5629 17.806 0.2381

Local 2019 0.1040 0.0668 3.5783 16.915 0.4141

Global-local 2019 0.1011 0.0553 2.6446 21.628 0.2732

All-zero 2019 0.1154 0.0777 4.6178 17.239 0.1154

Poisson (last) 2019 0.1442 0.0870 5.0394 18.237 0.1532

Conflictology 2019 0.1184 0.7860 3.1259 32.223 0.2180

Conf. neighbors 2019 0.1068 0.1539 3.2557 18.191 0.2320

Bootstrap 240 2019 0.1154 0.0783 4.6178 18.499 0.2861

Global 2020 0.1180 0.0622 3.1919 16.187 0.2065

Local 2020 0.1221 0.0730 4.1652 19.272 0.4123

Global-local 2020 0.1181 0.0621 3.1773 18.404 0.2269

11Description based on the source code at
https://github.com/prio-data/prediction_competition_2023/blob/a45796ce8d1ffdd82e879e05c46d90c
58b460a66/benchmark.py.
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Model Year CRPS IGN MIS MSE MAE

All-zero 2020 0.1319 0.0900 5.2749 17.218 0.1319

Poisson (last) 2020 0.1646 0.0975 5.7744 18.785 0.1749

Conflictology 2020 0.1275 0.7893 3.6535 18.586 0.1895

Conf. neighbors 2020 0.1230 0.1595 3.5811 16.653 0.1994

Bootstrap 240 2020 0.1317 0.0898 5.2749 18.132 0.2872

Global 2021 0.9246 0.0690 35.296 81843.2 1.0130

Local 2021 0.9293 0.0795 36.308 81844.3 1.2107

Global-local 2021 0.9243 0.0690 35.233 81843.1 1.0204

All-zero 2021 0.9398 0.0979 37.592 81844.9 0.9398

Poisson (last) 2021 0.9703 0.1061 37.924 81843.2 0.9813

Conflictology 2021 0.9302 0.7930 35.048 81841.8 0.9991

Conf. neighbors 2021 0.9279 0.1653 35.454 81843.0 1.0189

Bootstrap 240 2021 0.9396 0.0972 37.592 81844.9 1.0794

Global 2022 1.1274 0.0676 43.974 98532.3 1.2461

Local 2022 1.1289 0.0775 44.748 98528.7 1.4561

Global-local 2022 1.1263 0.0674 43.818 98519.6 1.2767

All-zero 2022 1.1375 0.0965 45.499 98560.1 1.1375

Poisson (last) 2022 1.4565 0.1180 56.598 98771.2 1.4768

Conflictology 2022 1.1419 0.7939 43.386 98183.2 1.2833

Conf. neighbors 2022 1.1311 0.1645 44.069 98440.0 1.2966

Bootstrap 240 2022 1.1373 0.0954 45.499 98560.0 1.2842

Global 2023 0.2147 0.0720 7.3453 189.74 0.3590

Local 2023 0.2207 0.0821 8.7784 212.79 1.1777

Global-local 2023 0.2175 0.0721 8.1044 239.99 0.6551

All-zero 2023 0.2236 0.0996 8.9446 163.33 0.2236

Poisson (last) 2023 9.7500 0.1268 387.10 1134057 9.7827

Conflictology 2023 0.5237 0.7958 17.030 34704.4 1.9570

Conf. neighbors 2023 0.2499 0.1677 12.133 4027.1 1.9647

Bootstrap 240 2023 0.2234 0.0985 8.9446 171.23 0.4475

Table 1: Overview of naive model and benchmark metrics. Best results for each year are marked in
bold. Lower scores signify better performance. Note that the CRPS is always equal to the MAE in the
case of all-zero predictions.

The evaluation results for our models and the benchmarks are reported in Table 1. We
base our evaluation on the challenge’s main metric CRPS and the two additional
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metrics specified in the prediction challenge (Hegre et al. 2023), the Ignorance Score
(IGN) and the Mean Interval Score (MIS), all of which evaluate samples from a
distribution. As the results show, our three models are reliably able to beat the
benchmarks, with very few exceptions. Our global model performs slightly better than
the local model, while the global-local combination performs about the same as the
global model. Depending on themetric, it even pulls ahead in two to three out of the six
test windows. Despite this, we prefer the global model as our main submission for
the prediction challenge, as it is the simpler approach.We also provide the other sets of
predictions for comparison. While this means we are unable to exploit systematic
differences across contexts with our approach to improve predictive performance, the
good performance of the local models still opens interesting new avenues for further
research, e.g. through the inclusion of only locally available data. However, differences
in performance between all three models as well as improvements over most
benchmarks are miniscule, which makes us hesitant to draw systematic conclusions
based on the characteristics of the individual scores.

Figure 2: Performance of models and benchmark for all test windows over time (a-c) on a log scale. As
the comparison shows, CRPS and MIS are highly correlated with the mean number of fatalities (d)
while the IGN is strongly correlated to the number of non-zero observations (e).

The CRPS and MIS are almost perfectly correlated with the number of fatalities (>
0.99), while the mean IGN score strongly correlates to the count of non-zero pgms (>
0.96) for most models and benchmarks (Figure 2).12 Comparison across years is
therefore likely not appropriate. Following this correlation the performance on the
CRPS and MIS for all models drops significantly in 2021 and 2022, two years with a

12 This holds true even for random predictions in a cursory examination of this relationship, leading us
to believe this is a characteristic of the metrics in relation to the highly zero-inflated observed actuals.
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comparatively high number of (mean) fatalities in the data. This is largely driven by
single outliers in the data with very high fatality counts13, while the number of
non-zero observations and therefore also the IGN stays more consistent across all years.
2021 and 2022 are also the only test windows where our models fall behind the
benchmarks on theMIS, although this is not necessarily related.

While somewhat outside the scope of this prediction challenge, we complement this
analysis with the mean squared error (MSE) and the mean absolute error (MAE)
evaluated against the sample mean to better understand where themean predictions of
our samples fall. The MSE reacts more strongly to severe misses, while these barely
impact the MAE. Given the zero-inflated nature of the data, the MAE strongly favors
the all-zero benchmark, with no clear winner emerging from the comparison of the
other models. Our best model tends to be slightly ahead of the benchmarks in theMSE,
indicating a fairly well-centered distribution, until the score breaks down in 2021 and
2022 due to the large outliers. In 2023 we do not suffer the same penalty as the recent
history based benchmarks when the mean number of fatalities returns to its prior
“normal”.

Github

The complete code of our contribution to the 2023/24 ViEWS prediction challenge
including our predictions is available at
https://github.com/DaMitti/views_competition_unibw_trees.
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