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ABSTRACT

In this contribution to the VIEWS 2023 prediction challenge, we propose using a set of different
Markov-type latent state models to make prediction of fatalities from state-based conflicts on the
country-month level. Partly building on the Markov modeling strategy from the VIEWS 2020 pre-
diction contest, we propose three types of Markov-style models. First, we use an observed Markov
model (OMM) which utilizes domain knowledge about conflict states to define observed states
through which countries can move over time. The OMM is flexible as it does not require any para-
metric assumptions, and can be viewed as a set of classification and regression problems. Second,
we propose a hidden (pseudo-) Markov model (HPMM) which utilizes unknowable, latent or hidden,
states which the countries can move through over time. The HPMM is not strictly Markovian as we
relax the assumption that the transition matrices are conditional on discrete states and instead model
transitions conditional on weighted states from the posterior state probabilities. Finally, we propose
aa Gaussian process continuous Markov model (GPCMM) which utilizes a continuous observed
Markov ‘state’ through which countries move over time.
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1 Introduction

This contribution to the VIEWS 2023/24 prediction challenge1 proposes using a set of different Markov-style models
to model and make forecasts for the number of fatalities from state-based conflicts for all countries of the world. The
approach builds on our contribution from the previous VIEWS competition (Randahl and Vegelius 2022) but extends
this to making distributional forecasts, and the type of Markov-style models used. We continue to believe that the real-
world dynamics of armed conflict closely resemble a Markov model with a large number of states. The fundamental
idea of a Markov process is that for each point in time, 𝑡, an individual. 𝑖, has a specific state, 𝑠, which may generate
some observed outcome, 𝑦. The individual 𝑖 may move through different states, for instance ‘peace’, ‘escalation’, or
‘war’, over time. Crucially in a Markov process, however, is that the likelihood of the future state(s) is conditional
only on the current state and not the previous states of the Markov chain (Karlin 2014). ˆ[For a more comprehensive
description of Markov models, see (Karlin 2014)

In order to make the distributional predictions of the prediction target, we generalize away from the traditional Markov
model (MM), focused on transition between observed Markov states, and the hidden Markov model (HMM), focused
on transitions between unobserved, hidden, Markov states as well as the observed emissions from these states, to three
Markov-style prediction models, the observed Markov model (OMM), the hidden pseudo Markov model (HPMM), and
the Gaussian process continuous Markov model (GPCMM). We call these ‘Markov-style’ models since they are not
setup in the same way as the traditional MM and HMM models, and are not necessarily strictly Markovian. The three
Markov-style prediction models are similar to traditional Markov models in that they assume that each unit (country)
at each point in time (month) has an underlying latent state and that this latent state affects the data generating process
of the outcome we are predicting. In the OMM, we define observable latent states and condition transitions between
states as well as the prediction of the outcome on the actual observed state of the process. In the HPMM we use three
pre-defined parametric distributions as the Markov states and their observed posterior probabilities as a mixture state
for each unit at each point in time. Transitions are not modeled as discrete transition between underlying hidden states
but rather as changes in the posterior state probabilities between the two time points. In the GPCMM the states are
observed but continuous and transitions and predictions are modeled as a joint gaussian process over the states and
features.

In this submission for the prediction competition, all of our models use a combination of thematic principal compo-
nents and transforms of the lagged dependent variable as predictor features. More specifically we use one principal
component from the water-related variables in the input data, two from the vdem data, two on the history of violence,
two on indicators relating to socioeconomic development, one on military expenditure, one on population, and two on
neighborhood characteristics, as well as the log1p sum of the total number of fatalities from state-based violence in
the last two years, and a decaying log1p sum of the total number of fatalities from state-based violence since the start
of the time-series with a 12 month half-time.

2 The observed Markov model

The observed Markov model (OMM) we propose for this prediction competition is setup similar to the OMM model
proposed in our contribution to the VIEWS 2020 prediction competition (Randahl and Vegelius 2022). We use the
same four states as in our previous contribution, namely, ‘war’ for countries which observe more than 0 fatalities in
the current month and previous month, ‘escalation’ for countries which observe more than 0 fatalities in the current
month but no fatalities in the previous month, ‘peace’ for countries which observe 0 fatalities in the current month
an previous month, and ‘deescalation’ for countries which observe 0 fatalities in the current month but more than 0
fatalities in the previous month. As these states are observed, transitions between the states can be modeled using any
type of classifier which produce probabilities that can be used to create transition matrices conditional on the states. In
this submission we use probability forests (Athey, Tibshirani, and Wager 2019; Tibshirani et al. 2023) to model these
transitions, with the full set of principal components and transforms of the lagged prediction target as input features.

Given that the states in the OMM are observed, the prediction of the target itself reduces to a set of regression problems
conditional on the observed state. Similar to the transitions, this means that any regressor can be used to model
these. As the goal of this prediction competition is to produce a distribution, or random sample, of values for each
individual in the test sets we use quantile forests (Athey, Tibshirani, and Wager 2019; Tibshirani et al. 2023) in order
to approximate a distribution of plausible values. We only estimate these quantiles for the ‘war’ and ‘escalation’ states,
as the number of fatalities is known to be zero for the ‘peace’ and ‘deescalation’ states.

1This paper documents a contribution to the VIEWS Prediction Challenge 2023/2024. Financial support for the Prediction
Challenge was provided by the German Ministry for Foreign Affairs. For more information on the Prediction Challenge please see
Hegre et. al (forthcoming) and https://viewsforecasting.org/research/prediction-challenge-2023
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To produce distributional predictions of the prediction target for each country-month 15 months into the future from
the end of the training data we simulate the Markov chain for this time period for each individual country based on
the last available predictor features. Conditional on the simulated Markov state, we then make a random draw of the
predicted number of fatalities. For the ‘peace’ and ‘deescalation’ states, this always corresponds to zero fatalities. For
the ‘war’ and ‘escalation’ states, we make a random uniform draw of the quantile for that individual country month
and then use the quantile forest to predict the specific quantile. We repeat this process 1,000 times to produce 1,000
random draws for each country-month.

3 The hidden pseudo Markov model

The hidden pseudo Markov model (HPMM) we propose for this prediction competition is similar to standard hidden
Markov models (HMM) (see for instance Karlin 2014; Jackson 2011) and the HMM we proposed for the previous
prediction competition (Randahl and Vegelius 2022). However, while a standard HMM could work for this prediction
problem, these HMMs often suffer from problems of identification and specification (see for instance Rabiner 1989;
Mattila 2018). Initial tests using standard HMMs failed to converge unless the number of predictor features was
restrictively low and the number of states were set to 2. In this submission we propose a more flexible version of the
HMM which we call the hidden pseudo Markov model in which we relax the assumption that the future state(s) of the
process are conditional on the discrete current state of the process. Instead, we condition the future states of the process
on the posterior probability of the different states in the current time point. This reduces the computational complexity
of the HMM algorithm as there is no longer a need to compute the Markov chain path through the forward-backward
algorithm in the training state. One way of viewing this algorithm is as a mixture between the OMM and HMM as it
uses the posterior state probabilities as observed non-discrete states. Another upside of this approach is that this again
also reduces the problem of transition into a regression problem 2 which increases the range of potential models which
can be used to model transitions. We note that the use of the HPMM should be considered to be very experimental.

The HPMM still requires, just as the HMM, the researcher to specify a number of parametric, hidden, states for the
process. Inspired by the extreme value and zero inflated regression model (Randahl and Vegelius forthcoming) we for
this submission use a HPMM with three hidden states, one zero state, one negative binomial state, and one extreme-
value, pareto, state. The parameters for the states and transitions are found using the EM-algorithm (Dempster, Laird,
and Rubin 1977). To produce distributional predictions of the prediction target for each country-month 15 months
into the future from the end of the training data we simulate the Markov chain for this time period for each individual
country based on the last available predictor features. In each time-step we draw simulated fatalities and then update
the posterior probabilities for the latent states which are then used to make predictions of both fatalities and latent
states in the next time step. We run this procedure 1,000 times to produce 1,000 HPMM chains for each country in
each time period.

4 The Gaussian process continuous Markov model

The Gaussian process continuous Markov model (GPCMM) we propose for this prediction competition is similar to
OMM in that the state is observed. The state in GPCMM is defined by the value of a predefined ‘state variable’. As in
OMM and HPMM the state defines the distribution of the number of fatalities, e.g., in terms of the effect of covariates
and the variance conditional on the covariates. In opposition to OMM and HPMM the state variable can be continuous
providing a potentially infinite space of states. Observations of similar values of the state variable are assumed to be
associated with similar distributions of the number of fatalities as a function of covariates, whereas observations with
large distances in the state space can have very different distributions. The parameters determining the distribution of
the number of fatalities are assumed to follow a Gaussian process (Schulz, Speekenbrink, and Krause 2018; Bishop
2006) with a kernel defined by the distance in the state space. In analog with the OMM, the GPCMM reduces to a
continuous set of regression problems. One for each value of the state variable.

The state transition is defined by another Gaussian process where similar states are associated with similar transition
probabilities among states. Hyper parameters in the kernel are estimated by maximizing the model evidence by the
Laplace approximation.

The distributional predictions are produced by propagating the state variable 15 steps into the future from the last
data point in the training. At each time point, a prediction of the number of fatalities is drawn from its distribution
conditional on the drawn state at that time point. This procedure is repeated 1,000 times to produce 1,000 random
draws for each country-month.

2As the prediction target here are probabilities rather than classes it is no longer a classification problem
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The GPCMM is still under development and in this submission we are only using the ‘state variable’, defined as
a decay function of the number of fatalities observed in the country, as well as its lag as prediction features when
simulating the GPCMM chains.
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