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Abstract

Dynamic analysis in VIEWS are important forecasts because the data are inherently
serially correlated (in space, time and both). Here we consider dynamic forecasts as
a baseline: above the density baselines proposed as part of VIEWS 2.0, the forecasts
proposed here provide Bayesian density forecasts that allow for the evaluation of simple
dynamics (autoregression and time trends) and for different distributional assumptions
(e.g., Poisson, negative binomial, zero-inflated, Tweedie). The idea here is that the
forecasts proposed should be baseline in the sense that no-change or density forecasts
account for the basic properties of the data. While modest, the idea is that the baseline
bar for a “success” here can and should be higher.

∗This paper documents a contribution to the VIEWS Prediction Challenge 2023/2024. Financial support
for the Prediction Challenge was provided by the German Ministry for Foreign Affairs. For more infor-
mation on the Prediction Challenge please see Hegre, H. et al. (2024) and https://viewsforecasting.

org/research/prediction-challenge-2023. Thanks for help with code and data go to Dhanish Pari-
malakumar. Thanks also for discussions and feedback from Vito D’Orazio. All errors are solely the re-
sponsibility of the author. This material is based upon work supported by the National Science Foundation
under Grant Nos. OAC-CSSI-1931541 and 2311142. Any opinions, findings, and conclusions or recom-
mendations expressed in this material are those of the author(s) and do not necessarily reflect the views
of the National Science Foundation. Replication code and data are available from the author and via
https://github.com/PTB-OEDA/VIEWS2-DensityForecasts.
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1 Introduction

This outlines the presentation and specifications of the forecast models contributed to Hegre,

H. et al. (2024). The goal here is to take a fully Bayesian approach that admits that a the

conflict forecaster is uncertain about the following choices:

1. Data in the sample / training: this in the main is addressed by the design of the

forecasting competition itself.

2. Choice of the parametric density (e.g., Poisson, compound Poisson / Tweedie, negative

binomial). A review of the papers from the previous event shows that this is a question

to be considered and especially in light of the forecast baseline being a simple Poisson

distribution (to be estimated based on the training sample chosen). For an overview

of the compound Poisson or Tweedie exponential dispersion models used below, see

Jorgensen (1997)

3. Specification of the dynamics: autoregression, local trends, global trends, and relative

weighting of each. In the earlier analyses of the pgm and cm data various approaches to

nearness in space-time were considered for how serially correlated the events predicted

may be. The idea here is to benchmark and systematize how one at least thinks about

this in the time dimension for hierarchical data (Pedersen et al., 2019).

4. Evaluation of the forecast densities: focus on distributions, not on single quantiles nor

on summary statistics (means, medians). This requires thinking about the comparing

the relative costs via Murphy diagrams, CRPS, DRPS, Taylor plots, and forecast

variances, etc.

Being “Bayesian” in this context is that models and probabilistic statements are open

for interpretation and the weighting of evidence about what one more or less sees as true

(for approaches to this see Gill (2021) and McElreath (2018)). It is not about (overly)

rigorous beliefs about one class or set of prior beliefs about the data, the forecast models,
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or the parmeters alone (in these models). Based on in- and out-of-sample comparisons an

assessment will and ought to be made that looks at the relative properties and beliefs about

the performance of models and their forecast densities.

2 Models / methods considered

The goal here is to use a Bayesian method to select the likelihood-forecast density class

(Poisson (P), negative binomial (NB), or Tweedie (TW)). Then these densities are applied

in different GAM / GLMM modeling contexts to address the dynamics. The GAM and

GLMM models (detailed below) are 1) local (country-specific time splines), and 2) GLMM

(time and country specific effects with autoregression).1

For each forecast period of VIEWS forecasts are generated with the following options:

forecasts set = #densities×#methods×#horizons(months)

=


Poisson (P)

Negative binomial (NB)

Tweedie (TW)

×

 GAM local

GLMM

×



2018 : 1− 2018 : 12

2019 : 1− 2019 : 12

2020 : 1− 2020 : 12

2021 : 1− 2021 : 12

2022 : 1− 2022 : 12

2023 : 1− 2023 : 12

2024 : 7− 2025 : 6


There are 2 additional forecasts each year to account for the gap between the training data

samples defined in the project and the forecast reporting periods.

1The previous version of this analysis also include tensor GAM specifications (October 2023). These are
not presented here since they do not fit as well as the models reported herein.
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2.1 GAM models

The GAMs allow for general interactions of the possible (local) time trends and their inter-

actions and commonalities with the country identifiers.2 In addition to the time and unit

random effects, autoregression terms are include. The GAM here has the form:

yit ∼ Count(µit) where log(µit) = β0 + β1yi,t−1 + β2f1(ti) + β3if2(vi, ti). (1)

A key Bayesian choice of the selection of the parametric distribution for the observed counts

yit (ged sb in the analysis).

The choices for the Count(·) distribution are

1. Poisson

2. Negative binomial (with estimation of the variance scale parameter θ).

3. Tweedie (with estimation of the scale power parameter p).

The function f1(ti) are the time-splines for the country i. The f2(ti, vi) are a tensor-grid

basis for country and time effects. In the GAM estimates are produced with β3 = 0, so only

lag dynamics and temporal splines are included. Allowing β3 ̸= 0 is the earlier “tensor”

specification (not reported here).

2.2 GLMM models

The GLMM specifications follow the standard form such that for the counts of sb ged = yit

for country i in month t:

g (E[y|u]) = Xβ + Zu (2)

2Note, that computationally this is feasible for the cm datasets. But it is not likely to be possible for the
pgm data. These are done using the canonical R package mgcv
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where g() is the canonical link function, X are the linear predictor (here just a common

intercept) and Z are the group-fixed effects.3 The Z include autoregressive dynamics and

monthly trends for each country.

3 Forecast description and formats

Sample scale target: cm

Initial training sample: Through October 2017.

Rolling / update decision: Models are updated for each forecast horizon. For example,

the 2020 forecasts include all prior data (origin to 2019(10)).

Model and File naming convention: In the folder submission structure for VIEWS, the

naming convention is

/count_model/cm/test_window=YYYY/count_model_YYYY.parquet

Here the file and path notation is

count is poisson, neg binom, tweedie,

model is gam, glmm,

YYYY is 2018, 2019, 2020, 2021, 2022, 2023, 2024.

As requested there are separate *.yml files in each /count_model/ folder for the forecast

model descriptions.

4 Preliminary findings and conclusions

In-sample information criteria (AIC) in Table 1 support the choices of models with explicit

dispersions terms (so for GAM and GLMM, the negative binomial and Tweedie models).

3Implementation details are at https://github.com/glmmTMB/glmmTMB.
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GAM GLMM
Training End Poisson NegBin Tweedie Poisson NegBin Tweedie

2017 Inf 95701 95534 94278 91710 91674
2018 Inf 99607 99412 98196 95459 95413
2019 1593986 103579 103386 102125 99245 99191
2020 1969312 107636 107439 106112 103035
2021 Inf 111908 111903 110296 107127
2022 Inf 116543 116893 114655 111465 111362
2023 Inf 121051 121575 118856 115571 115447

Table 1: AIC values for different training sets and models

Once out-of-sample forecast performance is assessed via CRPS metrics, results become

more mixed (as expected), but generally support the main point that simple benchmarking

can go beyond just draws from a Poisson: in fact this is too low of a bar and too many

models can easily beat it. Table 2 shows the CRPS metrics for the models described above

and comparisons to the various VIEWS benchmarks in the final 3 columns. GLMM models

with densities that allow for over-dipersion do best for forecasts from 2018–2021. They are

nearly identical to the various VIEWS baseline models in 2022. The 2023 data diverge

widely and the forecast models’ performances are generally quite poor. This is due to the

large changes in the mean, variance, and upper quantiles of the data since 2021 — as a

consquence of the Tigray, Ukraine-Russia, and Israel conflicts.4

Figure 1 shows the CRPS by month for each model. Note that they are all quite similar

from 2018:1–2021:6, growing much more volatile after 2020:6.

Figure 2 has two rows. The first row are the monthly mean counts for the indicated

months and years. The second row gives the ratio of the predicted standard deviation for

each of the forecast models in Table 2 to the observed data standard deviations by month.

Such a ratio of the model to the data standard deviations as a forecast metric is suggested by

Dietze (2017) to check for temporal forecast breakdowns. Ratios near one indicate that the

forecasts are near the data and deviations above (below) indicate forecast variance greater

(less) than the data variation. The ratios indicate good overall forecast performance for the

4Additional tables and figures in the Appendix below show this.
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Forecast Year GAM GLMM Constituent Exactly
Poisson Neg.Binom Tweedie Poisson Neg Binom Tweedie Bootstrap Poisson Zero

2018 38832015.90 7546550.45 21.55 16.31 16.69 17.06 23.58 20.17 24.13
2019 54104307.13 7360561.70 11.62 12.30 8.61 8.76 22.46 9.48 23.02
2020 33228633.54 6736348.29 25.29 22.25 21.51 21.97 31.42 23.70 32.04
2021 38394555.18 4800238.95 82.51 84.10 82.45 83.06 86.63 85.61 87.34
2022 41901335.72 15706903.49 3459661.85 124.76 127.04 127.66 120.25 131.02 120.97
2023 59410151.01 14612157.73 6054067.71 409.89 536.02 591.87 52.72 678.96 53.54

Table 2: CRPS by forecast year based on all prior periods as training data. Smallest CRPS values for each year noted in bold,
second smallest in italics.
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Figure 1: CRPS by model, by month. Each model is a different color / line type as given by
columns in Table 2.

baseline models (since they reproduced the data standard deviations on a static basis for

the rolling training data). Performance for the GLMM models forecast standard deviations

vary from 2018–2022 with some models — GLMM Poisson [black], GLMM negative binomial

[red], and GLMM Tweedie [green] below and above one. All of forecast models proposed

here (including non-baseline / benchmarks) overstate the forecast variance relative to the

data in 2023 (bottom right panel).

Finally, Figure 3 implements the plot of Taylor (2001). This figure places the normalized

standard deviation of the data on the x-axis and compares it to the normalized standard

deviation of the forecasts on the y-axis. This can then be conditioned over the posterior

forecast sample attributes (models, time periods, etc.). Based on the law of cosines these

quantities can be used to relate the correlation and the standard deviation of the data and
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Figure 2: Mean event counts (row 1) and Forecast model standard deviations to data stan-
dard deviations ratios (row 2), by month. Each model is a different color / line type as given
in Table 2.
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the forecasts.5 “Best forecasts” would be highly correlated and share the same normalized

value with the data at (1, 0) in the plot. Conditional (model) forecasts below this point

and toward the origin, have too little variance relative to the data. For 2018 and 2019 the

GLMM models are well correlated with the observed events and have variance ratios near

the observed data (consistent with the earlier ratio plots in Figure 3). But this performance

degrades in 2021 and 2022. A (normalized) Taylor plot for 2023 is not included since the

extreme values (noted in the Appendix) make the other comparisons impossible to see after

normalization.

5For two variables X and Y , the centered root mean squared error (CRMSE) is

CRMSE(X,Y ) =

√√√√ 1

n

n∑
i=1

[(xi − µx)(yi − µy)]2 (3)

CRMSE(X,Y )2 = σ2
X + σ2

Y − 2σXσY RXY (4)

where RXY is the correlation of X and Y . Then using the law of cosines (c2 = a2 + b2 − 2ab · cos(θ)),
θ = arccos(RXY ). For details on implementation, see Anžel et al. (2023); Carslaw and Ropkins (2012).
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Normalized Taylor Diagram 
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Figure 3: Taylor plot
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Figure 4: Various monthly summary statistics for the VIEWS cm data, 1990-2024. Vertical
line is December 2021. Note the y-axes differences.

Appendix: supplemental summary figures and statistics

12



Table 3: Worst top (99.5%) of the data since 2018, sorted by date
GED SB Country Date

1 3115 Afghanistan July 2019
2 2335 Afghanistan October 2019
3 5991 Azerbaijan November 2019
4 2247 Afghanistan November 2019
5 19424 Ethiopia December 2019
6 2051 Afghanistan December 2019
7 2657 Afghanistan January 2020
8 2215 Ethiopia February 2020
9 2048 Afghanistan February 2020

10 2793 Yemen April 2020
11 2768 Afghanistan April 2020
12 4861 Afghanistan May 2020
13 2668 Ethiopia June 2020
14 7512 Afghanistan June 2020
15 8356 Afghanistan July 2020
16 5163 Afghanistan August 2020
17 2782 Yemen October 2020
18 11246 Yemen November 2020
19 113554 Ethiopia December 2020
20 14748 Ukraine March 2021
21 10810 Ukraine April 2021
22 21216 Ukraine May 2021
23 6672 Ukraine June 2021
24 2804 Ukraine July 2021
25 2937 Ukraine August 2021
26 21171 Ethiopia September 2021
27 4828 Ukraine September 2021
28 124427 Ethiopia October 2021
29 4594 Ukraine October 2021
30 15771 Ethiopia November 2021
31 6475 Ukraine November 2021
32 14960 Ukraine December 2021
33 5310 Ukraine January 2022
34 5554 Ukraine February 2022
35 5187 Ukraine March 2022
36 3782 Ukraine April 2022
37 11031 Ukraine May 2022
38 4298 Ukraine June 2022
39 3939 Ukraine July 2022
40 3663 Ukraine August 2022
41 2997 Ukraine September 2022
42 5296 Ukraine October 2022
43 9175 Israel October 2022
44 5034 Ukraine November 2022
45 6303 Israel November 2022
46 14514 Ukraine December 2022
47 7068 Israel December 2022
48 2197 Ukraine February 2023
49 2551 Israel March 2023
50 3804 Ukraine April 2023
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