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Abstract

This contribution is at the grid level. The idea is to generate point predictions using automated
machine learning, then do a grid-search over parameterizations of different distributions to find
the one that performs best. Models were compared using the CRPS across test windows for
(1) different Box-Cox transformations on the dependent variable, (2) different sets of predic-
tor variables, and (3) different distributions (Poisson, Negative Binomial, and Tweedie). To
make bolder predictions and to make use of different strengths across each setup, ensembles
of probabilistic models were built and compared across the different Box-Cox transformations.
Two different models were submitted. The dorazio_log model forecasts the log of the depen-
dent variable and then back-transforms to the original scale. This model is more conservative
but scores a lower CRPS. Other Box-Cox transformations produced higher forecasted values
which scored better for some grid-months. The dorazio_ensemble model uses forecasts from
five different Box-Cox transformations, selecting which to use based on a separate grid-month
forecasting model that was trained to predict when to use which transformation. All other
factors between these models are the same, including common input features and the Tweedie
distribution.

*This paper documents a contribution to the VIEWS Prediction Challenge 2023/2024. Finan-
cial support for the Prediction Challenge was provided by the German Ministry for Foreign Af-
fairs. For more information on the Prediction Challenge please see Hegre et al. (Forthcoming) and
https://viewsforecasting.org/research/prediction-challenge-2023. Any questions about this paper may be
directed to Vito D’Orazio at vito.dorazio@mail.wvu.edu.



The VIEWS problem is to forecast levels of state-based violence for each of the twelve
months of a calendar year using data up to and including October from the previous year
(Hegre et al. 2021, 2022). The forecasts may be at the country or grid level of aggregation
using prio-grid Tollefsen et al. (2012). This contribution is at the prio-grid month level
(PGM).

The idea is to generate point predictions using automated machine learning (autoML),
then do a grid-search over parameterizations of different distributions to find the one that
performs best. Models were compared using the continuous rank probability score across test
windows for (1) different Box-Cox transformations on the dependent variable, (2) different
sets of predictor variables, and (3) different distributions for the forecasts (Poisson, Negative
Binomial, and Tweedie).

Two different models were submitted: dorazio_log and dorazio_ensemble. For both, point
predictions were obtained using the H20 autoML system and a common set of 74 conflict
history variables. Each of these predictor variables was constructed from the raw GED
event data using only state-based conflict events. Forecast distributions were obtained by
identifying grid-specific parameterizations of the T'weedie distribution and taking 1,000 draws
from that distribution with a mean equal to the point prediction for the grid. Each model
had its own grid-specific parameterization that was optimized by minimizing the continuous
rank probability score using the last five years worth of predictions.

The dorazio_log model differs from the dorazio_ensemble model in one important way.
The dorazio_log model forecasts the log of the dependent variable (Box-Cox transformation
where A = 0) with autoML, and then back-transforms to obtain a count. The dorazio-
ensemble model forecasts five different Box-Cox transformations, obtaining a full set of
forecast distributions for all five. Then, one of those five is selected for each grid-month based
on a separate forecasting model that was trained to predict when to use which transformation.

The dorazio_log model scores a lower mean CRPS (0.442) but produces relatively low



forecasted values. The dorazio_ensemble model scores a worse CRPS (0.452) but makes

bolder forecasts.

1 Point Predictions

Producing the point predictions generally follows the approach taken in D’Orazio and Lin

(2022), which was the best performing model in the first VIEWS forecasting competition.

Expanding the Input Features

The first step to generate the point predictions was to expand the initial data provided
by VIEWS with additional conflict history variables. To do this, GED version 24.1 was
combined with the UCDP Candidate Events Dataset version 24.0.5 (Sundberg and Melander
2013; Hegre et al. 2020). This provided raw GED event data through April 2024.

This data was aggregated to create a number of new variables, primarily those that
focused on counts of events. For example, instead of aggregating the number of state-based
fatalities in a grid-month, you can aggregate the count of of state-based conflict events.
Results have shown that count-based variables improve performance when forecasting future
levels of fatalities (D’Orazio and Lin 2022) .

Combining these data with the data provided by VIEWS gives a total of 74 predictors.

The different classes are shown in Table 1, with the full set of features in the appendix.

Transforming the Dependent Variable

To produce different sets of point predictions for each grid-month, different Box-Cox trans-
formations of the dependent variable were experimented with. The formula is shown in

Equation 1. Values of A that were tested include -1, -0.5, 0, 0.5, and 1.



Table 1. Variable Classes

Class ‘ Description

Violence | Thresholds, counts, measures of violence at time t.
Time since | Number of periods since violence has been observed.
Time since spatial | Number of periods since violence has been observed in a neighbor.
Time since decay | Function to weight temporal distance since violence.
Time lag | Violence at period t — ¢ where 7 > 0.
Spatial lag | Violence in neighbors, neighbors of neighbors, etc.
Space-time distance | Spatial and temporal distance to violence as a single number.
Time lag spatial lag | Violence in neighbors at period ¢ — 7 where 7 > 0.
Rolling max | Rolling maximum of violence in a time window.
Onset | Onset of violence in a time window.

—1
Y for X#£0 1

log(y) for A=0

For each grid-month, the dependent variable was transformed, the model was trained,
point predictions were obtained, and then the predictions were inverted back to the original
count scale. The dorazio_log model corresponds to A = 0. The dorazio_ensemble model uses
different values of A for different grid-months. This will be discussed in more detail further

down.

Learning Algorithm

Following D’Orazio and Lin (2022), the H20 autoML system was used. Each run was given
2.5 hours of training time and a maximum number of 20 models. After completion, H20 also
provided a stacked ensemble of all ten models, and a stacked ensemble of the best performing
models from each family of algorithms. The performance metric for H20 was the root mean
squared error. For each run, the best performing model was selected and used to generate

point predictions for the grid-months it was trained to forecast for.



2 Forecast Distributions

Forecast distributions reflect uncertainty in the point estimates. The default distribution for
the VIEWS competition is take 1,000 draws from the Poisson distribution where the point
prediction is sole parameter, representing both the mean and variance. Any distribution can
be used, and the ones experimented with here were the Negative Binomial and the T'weedie.
There are two parameters for the Negative Binomial: the mean and the dispersion. There
are three parameters for the Tweedie: the mean, dispersion, and the power.

The first approach at parameterizing these distributions was to draw 100 values for each
grid-month over the last five years using the point prediction as the mean and a fixed value
for the dispersion and power. These 100 draws were used to calculate the continuous rank
probability score (CRPS). The CRPS was also calculated using the default Poisson approach.
The Negative Binomial was consistently the best performing distribution.

The second approach attempted to improve on the first by allowing for grid-specific
parameterizations. The results from these experiments showed that the Tweedie was con-
sistently as good or better than the Negative Binomial. Thus, the Tweedie distribution was
selected. The potential dispersion values were .1, .5, 1, 2, 3, 4, 5. The potential power values
were 1, 1.25, 1.5, 1.75, 2. Thus, there were a total of 35 different possible parameterizations
for each grid. Each of the 360 models (72 months * 5 Box-Cox transformations) has its own

grid-specific parameterizations, from which 1,000 draws were taken.

3 Results

Table 2 shows the CRPS values by year for each of the Box-Cox transformations and the for
the ensemble model. The dorazio_log model corresponds to A = 0 in this table. While the
CRPS is generally lower, the model tends to forecast relatively low values. However, bolder

forecasts may be more valuable. The model where A = 1 forecasts the highest values, but at



a considerable cost to the CRPS.

Table 2. CRPS Values Across Models

A

2018

2019

2020

2021

2022 2023 | Mean

-1
-0.5
0
0.5
1

0.1360
0.1376
0.1439
0.1621
0.1635

0.1109
0.1094
0.1068
0.1062
0.1153

0.1262
0.1239
0.1221
0.1217
0.1290

0.9335
0.9316
0.9288
0.9297
0.9446

1.1319 0.2187 | 0.4429
1.1306 0.2178 | 0.4418
1.1304 0.2198 | 0.4420
1.1424 0.2770 | 0.4565
1.1598 0.7360 | 0.5414

Ensemble

0.1439

0.1151

0.1247

0.9318

1.1330 0.2332 | 0.4470

The dorazio_ensemble uses forecasts from the five

different Box-Cox transformations,

selecting which to use based on a separate grid-month forecasting model that was trained

to predict when to use which transformation. The model does forecast higher values. For

example, consider 2022. The forecast distribution for each grid-month consists of 1,000

draws. For dorazio_log, there are 39 grids with at least one draw greater than or equal to

100. For dorazio_ensemble there are 93. However, the higher forecasts come at a cost to the

CRPS.



4 Appendix

Predictors Predictors
1 priogrid_gid greq-2_sb_count
2 gedsb greq-3_sb_count
3 decay_gedsb_1 greq_H_sb_count
4  decay_ged_sb_25 greq-10_sb_count
5 decay_ged_sb_5 In_sb_count
6 decay_ged_sb_100 time_since_greq_1_sb_count
7  decay_ged_sb_500 time_since_greq_2_sb_count
8 splag 1.1sb_1 time_since_greq_3_sb_count
9 splag_1_decay_ged_sb_1 time_since_greq-5_sb_count
10 treelag_1_sb time_since_greq_10_sb_count
11 treelag_2_sb tlag_1_sb_count
12 sptime_dist_k1_ged_sb tlag_2_sb_count
13 sptime_dist_k10_ged_sb tlag_3_sb_count
14 sptime_dist_k001_ged_sb tlag_4_sb_count
15  ged_sb_splag_1 tlag_5_sb_count
16  mov_avg_6_ged_best_sb tlag_6_sb_count
17  mov_avg_12_ged_best_sb tlag_7_sb_count
18 mov_avg_36_ged_best_sb tlag_8_sb_count
19  mov_sum_6_ged_best_sb tlag_9_sb_count
20 mov_sum-12_ged_best_sb tlag_10_sb_count
21  mov_sum_36_ged_best_sb tlag_11_sb_count
22 ged_sb_tlag_1 tlag_12_sb_count
23 ged_sb_tlag_2 splag_-1_1_sb_count
24  ged_sb_tlag_3 tlag_1_splag_1_1_sb_count
25 ged_sb_tlag 4 tlag_2_splag_1_1_sb_count
26 ged_sb_tlag 5 tlag_3_splag_1_1_sb_count
27 ged_sb_tlag_6 greq-1_splag_1_1_sb_count
28 ged_sb_tlag 7 greq-2_splag_1_1_sb_count
29 ged_sb_tlag_8 greq-3_splag_1_1_sb_count
30 ged-sb_tlag_9 greq-H_splag_1_1_sb_count
31 gedsb_tlag_10 greq-10_splag_1_1_sb_count
32 ged.sb_tlag_11 time_since_greq-1_splag_1_1_sb_count
33 ged.sb_tlag 12 time_since_greq_2_splag_1_1_sb_count
34 ged_sb_decay_12_time_since time_since_greq_3_splag_1_1_sb_count
35 ged.sb_tlag_1_splag_1 time_since_greq_5_splag_1_1_sb_count
36 sb_count time_since_greq-10_splag_1_1_sb_count
37 greq_1_sb_count gwno
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