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Abstract

We describe how individual models are combined into model ensembles in VIEWS, and how model
predictions are calibrated.
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1 Ensembling – using the ‘wisdom of the crowd’

No statistical or machine-learning model or algorithm can perfectly learn the patterns of behavior that
link some observable predictors to subsequent observations of the number of fatalities in war. Building on
a variety of theoretical and methodological perspectives – the ‘wisdom of the crowd’ – clearly yields the
best foundation for good decisions and high-quality forecasts (Tetlock, 2005). The greater the variance
of adequate models available, the better a forecasting and decision-making system performs (Page, 2007).
Ensembling – grouping of diverse forecasting models – also work as a means to smooth over problems
(Armstrong, Green, and Graefe, 2015). Following the approach in ViEWS (Hegre et al., 2019), we use
ensembling of constituent models to aggregate insights from various models, allowing a variety of modeling
algorithms and feature sets, and applying state-of-the-art model weighting algorithms (Sivanandam and
Deepa, 2008; Scrucca et al., 2013; Montgomery, Hollenbach, and Ward, 2012).

1.1 Obtaining ensemble weights at the pgm level

The ensemble algorithm we use at the pgm level is just the equally weighted mean. However, it is clear
from the evaluation of results below that some models perform better than others, and we should be able
to improve performance by giving these models more weight in our ensembles. At the cm level, this is
acheived using a genetic algorithm, described in the next section, but this is prohibitively expensive at the
pgm level.

1.2 Obtaining ensemble weights at the cm level

For the cm level, we have developed an algorithm to learn these weights from the data. To do this, we split
the data into three periods. The first period, the ‘training period’, include the years 1990–2013. We train
the constituent models described above on data for this period, and predict for the ‘calibration period’;
2018–2021. Our ensemble weighting and calibration model use these predictions as well as data for the
true outcome for the calibration period to obtain weights and calibration parameters. We then retrain all
the constituent models for the 1990–2017 period and generate predictions for the 2018–2021 period, and
apply the weights and calibration parameters to produce ensemble forecasts for that period. The forecasts
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(a) 1990–2022, Country Level (b) 1990–2022, PRIO-GRID level

Figure 1. Kernel density plots for all country-months/PRIO-GRID-months with non-zero fatality counts
1990–2022. The vertical lines show the mean (non-logged) fatality counts for the non-zero observations.
Source: UCDP GED, 2022

for the true future will use the 2018–2021 period as calibration period, and generate ensemble predictions
for the 2023-2025 period. At the cm level, our model weights are obtained using a genetic algorithm
(Sivanandam and Deepa, 2008; Russell and Norvig, 2020). These optimize a user-defined performance
metric in the calibration data by letting a population of random model weights evolve over a large number
of generations to find optimal weights. Genetic algorithms provide a fast, flexible, and intuitive way
to optimize the performance metric when the inputs are high-dimensional or when there are complex
restrictions on the available inputs.

The genetic ensembling algorithm, as implemented, works like this: 100 random ensembles are chosen
with a random set of weights (genes), under the sole condition that the sum of those weights is between
0.5 and 3. Each of the 100 ensembles are then computed using the assigned weights and then evaluated
using a mean squared error fitness function (1/emse) against the data in the calibration period. Pairs
of the ensembles are then sampled through a weighted sampling procedure based on the fitness scores.
These pairs are recombined in a simulation of genetic reproduction - a random subset of weights from one
ensemble in the pair is combined with the remaining weights from the other ensemble in the pair. Then,
with a probability of .2, a random subset of weights from the resulting ensemble is replaced with random
weights. 100 such recombination/mutation processes are carried out, leading to 100 new organisms that
form a new generation, to be put, again, through the same process as above.1 This is repeated 500 times
(generations), with the best ensembles from the last (500th) generation being used.

2 Calibration

Predictions should ideally have roughly the same distributions as the observed outcome. Given the dis-
tribution of the outcome variable (Figure 1), few algorithms would get this right without post-prediction

1As a complication, to improve performance, at each generation, the 10 best models of the previous generations are ‘spared
and cloned’, i.e. preserved intact, without recombination and mutation for the next generation. The ten worst performers in
the mutation and recombination steps are discarded, so that the population of ensembles remains 100.
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Figure 2. GAM calibration function, fat_topics_histgbm model (left) and
fat_hh20_xgb model (right), s = 3

Source: ViEWS, 2022

calibration. In particular, models tend to yield distributions with smaller variance than the outcome,
reducing our ability to correctly predict the total number of fatalities. Moreover, they tend to have means
that are lower than the true mean, and some models produce negative values even though these do not
exist in the training data.

We have explored two ways to calibrate predictions. The first is to multiply the predicted number of
fatalities with the constant that gives the same variance (in the calibration partition) as the outcome
– in practice, this is equivalent to estimating a no-constant linear regression model with the outcome
in the calibration partition as the dependent variable and the prediction as the independent variable.
The estimated parameter is in most cases larger than 1, expanding the variance of the predictions and
increasing the mean. We estimate this calibration model separately for each constituent model and each
step, and apply the calibration parameter (the β coefficient in the OLS model) to the predictions for the
test partition. We also explored including an intercept in the calibration model. This, however, in most
cases yields non-zero predictions for a majority of the cases where the true outcome is zero, significantly
hurting performance. Without an intercept term, however, the calibration works poorly for models like
the XGBoost model that can yield negative predictions – multiplying a negative prediction with a number
larger than one obviously does not help calibration.

To counter these challenges, we have moved to using a generalized additive linear model (a GAM), using
the PYGAM package (servén, Brummitt, and Abedi, 2020). GAM models fit the relationship between the
dependent and independent variables as a very flexible function. To avoid overfitting, we constrained the
model to yield calibrated predictions that are monotonically increasing in the non-calibrated predictions
– if the original model ranks one case higher than another, the calibrated model also ranks it as at least
as high. We set the parameters of the function so that the calibrated transformation is quite smooth,
retaining most of the original prediction.

This model was estimated separately for each constituent model and for each step. Figure 2 illustrates
how the function works. The calibration function works well, typically decreasing MSE by about 10%
relative to the uncalibrated predictions, mostly removes zero predictions, and increases the variance.

Figure 2 shows two example calibrations from the fatalities 001 version. The y axis shows the cali-
brated predicted number of fatalities as a function of the original prediction (x axis). In the case of the
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fat_topics_histgbm model (left), the GAM function does not alter the original predictions much except
for predictions above 4 (about 50 deaths), but pull the remaining predictions considerably upwards. In
the case of fat_hh20_xgb model (right), which yields a number of large negative predictions, all negative
predictions are calibrated to zero, and the remaining predictions are mostly unchanged.

The genetic algorithm can in principle yield weights that sum to less than or more than one. This, then,
serves as a second calibration step.

Calibration at the pgm level

The issue of calibration is particularly acute for the pgm models. Africa and the Middle East together
comprise approximately 13,000 PRIO-GRID cells, which when multiplied by the 356 time–steps under
consideration here, yields around five million units of analysis. In any of the conflict datasets, the vast
majority of values (i.e. the numbers of fatalities) associated with these units of analysis are zero.

The imbalance between the numbers of zero and non-zero data points in problems like conflict prediction
is sometimes redressed by randomly discarding a (possibly very large) fraction of the zero-valued units of
analysis, so that the regression algorithms which search for patterns in the data are exposed to more equal
numbers of zero and non-zero values. This is known as downsampling and the hope in doing this is that
the algorithms are not swamped by zero values and do not, therefore, tend to simply predict zeros or very
small values everywhere. Downsampling also reduces the runtime of fitting procedures, since algorithms
have less data to deal with.

We examined the effect of downsampling by discarding between 70 and 98 per cent of the zero-valued
data points. Very large discard fractions significantly worsened predictive performance and more moder-
ate fractions yielded no appreciable performance improvement, while runtimes required to dispense with
downsampling entirely were not prohibitive. We therefore abandoned downsampling as a data-engineering
strategy.

However, with or without moderate downsampling, the predictive performance of the random forest-,
LGBM- and gradient-boosting algorithms were all quite poor, as measured by examining MSE values, or
more subjectively by comparing maps of predictions from the test partition with observations from the
same timestep.

The clearest problem is that, while able to predict the presence or absence of conflict in roughly the correct
geographic locations (although with some spread around the locations of observed conflict events), the
numbers of predicted fatalities were almost always very small. This is indicative of a normalisation or
calibration problem, as described in the previous section.

A partial solution to this problem might be to use another evaluation metric than MSE at the pgm level,
one that gives credit for predictions of the right magnitude, but not quite at the correct geographic location
or time. The pEMDiv metric (Greene et al., 2019) is the best candidate we are aware of. Our current
evaluation procedures are described in (Hegre et al., 2023a).

Another issue is that it is desirable that the sum of predicted fatalities at the pgm level over the grid
cells that make up a given country are similar to the predicted fatalities for that country generated at the
cm level. In the modeling system, we calibrate the predictions along this line of logic. Each pgm cell is
assigned to the country that contains most or all of the cell and the fatalities in all the cells belonging
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to a give country in a given month are summed and multiplied by a factor such that the sum is equal to
the forecast fatalities for the same country in the same month. The MSE scores we report, then, have a
different interpretation – they should be read as ranking models in terms of the model’s ability to capture
the distribution of the total fatalities suggested by the cm ensemble.

3 Models in the ensemble

Table 1 lists the models in the fatalities002 cm ensemble. Further descriptions of the current models are
described in (Hegre et al., 2023b).

Model name Weight, step 3 Weight, step 12 Weight, step 36
fatalities002_baseline_rf 0.0 0.0 0.08
fatalities002_conflicthistory_rf 0.2 0.18 0.07
fatalities002_conflicthistory_gbm 0.015 0.2 0.3
fatalities002_conflicthistory_hurdle_lgb 0.08 0.16 0.0
fatalities002_conflicthistory_long_xgb 0.0 0.07 0.015
fatalities002_vdem_hurdle_xgb 0.01 0.0 0.015
fatalities002_wdi_rf 0.0 0.01 0.015
fatalities002_topics_rf 0.015 0.0 0.015
fatalities002_topics_xgb 0.01 0.02 0.07
fatalities002_topics_hurdle_lgb 0.0 0.04 0.015
fatalities002_joint_broad_rf 0.09 0.01 0.02
fatalities002_joint_broad_hurdle_rf 0.0 0.02 0.0
fatalities002_joint_narrow_xgb 0.03 0.0 0.01
fatalities002_joint_narrow_hurdle_xgb 0.025 0.02 0.01
fatalities002_all_pca3_xgb 0.14 0.015 0.01
fatalities002_aquastat_rf 0.025 0.0 0.0
fatalities002_faostat_rf 0.02 0.0 0.0
fatalities002_faoprices_rf 0.02 0.0 0.015
fatalities002_imfweo_rf 0.01 0.01 0.025
fatalities002_Markov_glm 0.3 0.18 0.3
fatalities002_Markov_rf 0.16 0.18 0.25

Table 1. Models in the fatalities002 cm ensemble

4 Change history

4.1 Fatalities002

The Fatalities002 version does not introduce any changes in ensembling or calibration with respect to
Fatalities001.
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4.2 Fatalities001

The current ensembling procedures were introduced together with the fatalities model thanks to funding
from the UK FCD Hegre et al. (2022).

4.3 ViEWS-ESCWA

The VIEWS system was expanded to cover the Middle East (including Turkey and Iran) thanks to funding
from the UN ESCWA (Theisen et al., 2021).

4.4 ViEWS2020

ViEWS2020 is presented in (Hegre et al., 2021). In this version, thematic constituent models were trained
and fitted separately before combined into two broader ensemble models, one for country level predictions
and one for PRIO-GRID.

4.5 ViEWS2018

The first version of the ViEWS early warning system, the ‘ViEWS2018’ version was launched in July 2018
(Hegre et al., 2019).
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